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SUMMARY 

Transcatheter aortic valve (TAV) replacement is now the standard of care treatment 

for aortic stenosis in high-risk patients. There has been a recent push in the industry to 

develop smaller profile TAVs to make this treatment a safe and effective alternative to 

valve surgery in an even wider spectrum of patients. Smaller devices requiring thinner 

leaflets may come with the tradeoff of reduced durability. However, the impacts of 

different TAV leaflet materials and valve designs on TAV function and durability, 

particularly under non-ideal deployment conditions, have not been thoroughly assessed. 

By combining material modeling and geometric parameterization of valve leaflets, 

performance and safety of TAV devices can be comprehensively evaluated. The objectives 

of this study were to employ constitutive modeling tools to describe the material properties 

of pericardial tissues, and then to implement them in the development of a computational 

framework for exploring the impacts of leaflet material and design on TAV function.  

The mechanical properties of pericardial tissue have not been well characterized, 

particularly under flexure, which is an important mode of deformation for native and 

bioprosthetic heart valves. Pericardia material models were implemented in finite element 

simulations of valve deformation and directly compared. The impact of TAV leaflet 

material and geometry on mechanical stress was closely examined and fundamental 

relationships between design characteristics and leaflet deformation were established. 

Eccentric TAV expansion was modeled and optimization tools were employed to identify 

leaflet geometries which minimize stress during mechanical loading to increase durability. 

The results from these studies may offer scientific rationale for the design of durable and 

robust next-generation TAV devices.  
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1 INTRODUCTION 

 

1.1 The Heart 

 The heart is responsible for driving blood flow through the body. As seen in Figure 

1, the heart is composed of four chambers and four valves. Chambers pump blood in a 

specific direction and valves ensure unidirectional blood flow.  

 

Figure 1. Artistic rendition of a normal heart, courtesy of www.interactive-

biology.com 

 

Oxygenated blood enters the left atrium via pulmonary veins and the mitral valve allows 

blood to fill the left ventricle (LV) during diastole. The myocardial muscle surrounding the 

left ventricle contracts, dramatically increasing LV pressure. Pressure inside the 
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cardiovascular system drives blood flow. A typical pressure waveform through a cardiac 

cycle is illustrated in Figure 2. 

 

Figure 2. Representative pressure and volume waveforms during diastole and systole, 

courtesy of www.cvphysiology.com 

 

Systolic ejection is followed by a myocardial relaxation phase where blood is pooled in the 

LV again. Aortic pressure is approximately 80 mmHg at the beginning of systole and 

reaches approximately 120 mmHg near diastole. The net pressure difference across the 

aortic valve, i.e. transvalvular pressure gradient, during systole is usually very low, yet 

large enough to cause aortic valve leaflets to bend open.   

1.2 The Aortic Valve 

 The aortic valve (AV) allows unidirectional blood flow from the left ventricle to 

the aorta. The aortic valve opens during ventricular systole and closes during diastole. 
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During systole, contraction of left ventricular muscle drives blood flow through the aortic 

valve towards the coronary arteries and aorta. The aortic valve consists of 3 symmetric, 

thin leaflets. A rapid shift in transvalvular pressure gradient causes AV leaflets to quickly 

bend such that the valve is opened.     

1.2.1 Aortic Valve Leaflets 

 AV leaflets are thin, avascular structures whose pressure-driven deformation allows 

for unidirectional blood flow to the aorta. The left coronary leaflet, right coronary leaflet, 

and non-coronary leaflets are named for their proximity to their respective coronary artery 

ostium. An illustration of native AV leaflets within the aortic root is displayed in Figure 3.  

 

Figure 3. Anatomy of AV leaflet inside a dissected aortic annulus, taken from Kasel 

[1].  

 

Each leaflet is attached to the aortic annulus base and meets its neighboring leaflet at the 

sinotubular junction, in a leaflet region called the commissure. The free edge of each leaflet 

coapts with its neighbor when pressure is applied to the aortic side of the AV. The drop in 
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LV pressure as diastole begins results in a peak transvalvular pressure of nearly 120mmHg 

acting on the leaflets’ aortic surface.   

1.2.2 Aortic Valve Calcification 

 Valvular heart disease (VHD) is the dysfunction of at least one heart valve and is 

attributed to 10% to 20% of cardiac surgeries [2]. The American Heart Association 

reported that in 2013, 67.5% of VHD-related deaths were due to AV disorders [3]. Two 

common disorders of the AV are calcific aortic stenosis and bicuspid aortic valve disease. 

Aortic stenosis (AS) is an age-related disease in which narrowing of the AV prevents 

proper valve closure and opening. Moderate or severe aortic stenosis occurs in 2.8% of 

patients over the age of 75 [3]. Calcium deposition can lead to severe local thickening 

which restricts leaflet bending, eventually resulting in valve insufficiency.  

 Early investigation of calcium deposition patterns revealed a strong correlation 

between nodule formation and regions of high mechanical stress [4]. In one study, 221 

leaflets were examined and 87% of calcified leaflets followed a specific trend [5]. An 

illustration of two common calcification regions is shown in Figure 4. 
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Figure 4. Typical patterns of calcium deposition in native aortic valves commonly 

develop circumferentially, across the belly (A) or radially, along the attachment edge 

(B) [6]. 

 

The largest degree of flexion occurs at the cusp attachment and secondary bending is 

observed near the line of coaptation. Therefore, it is believed that mechanical stress induces 

local tissue degeneration and subsequent calcification initiation.  

1.3 Aortic Valve Replacement 

 Poor performance of the aortic valve, if left unmanaged, can lead to angina, 

syncope, and dyspnea. Even though aortic valve replacement (AVR) is the preferred 

treatment for severe AS, a considerable portion of patients do not undergo AVR. In an 

investigation of nearly 1000 patients across 10 centers, only 41% of patients who met the 

criteria for severe AS were treated for AVR [7]. Some of the main reasons for not 

undergoing AVR were comorbidities, high operative risk, and advanced age. The one-year 

survival rates for patients treated with AVR and unoperated patients were 94% and 69%, 

respectively.    

 Aortic valves have been traditionally replaced with a mechanical or bioprosthetic 

heart valve via open-heart surgery. More recently, however, transcatheter aortic valve 
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replacement (TAVR) has demonstrated non-inferiority to surgical aortic valve replacement 

(SAVR) in high-risk populations [8].  

1.3.1 Surgical Aortic Valve Replacement 

 Surgical implantation of prosthetic valves has been considered the gold standard of 

aortic valve replacement. Surgical pericardial valves, typically composed of chemically-

preserved bovine or porcine pericardial leaflets, have stood out for their excellent 

hemodynamic performance and biocompatibility; however, they are known to have limited 

durability compared to mechanical valves. Of the currently-available surgical aortic valves, 

the Carpentier-Edwards Perimount (CEP) valve, shown in Figure 5, is recognized for its 

long-term durability.   

 

Figure 5. Carpentier-Edwards PERIMOUNT aortic valve bioprosthesis. (courtesy of 

www.edwards.com)  

 

Despite the CEP valve’s expected lifespan of nearly 20 years, surgical aortic valve 

replacement (SAVR) may not be a suitable option for many patients. As previously 

mentioned, severe AS typically presents in the elderly population. Advanced age and high 

operative risk are significant contraindications for open-heart surgery, thus, there is a 

substantial need for minimally invasive treatment options.   

1.3.2 Transcatheter Aortic Valve Replacement 
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 A percutaneous approach to aortic valve replacement was developed for patients 

considered high-risk for open-heart surgery or completely inoperable. A catheter system is 

used to insert and position the replacement valve which consists of pericardial leaflets 

mounted inside of a stent frame. The transcatheter aortic valve (TAV) is deployed using 

balloon expansion. The first successful transcatheter aortic valve replacement (TAVR) was 

performed by Cribier in 2002 [9]. Since its introduction, TAVR has been performed in 

more than 150,000 patients [10].  

 In the past decade, escalation of surgical proficiency and device modification have 

helped improve patient outcomes by reducing occurrence of paravalvular leakage, stroke, 

and vascular injury. Despite TAVRs growing success, it is widely believed that TAV 

devices suffer from limited durability. A recent computational analysis of bioprosthetic 

valve fatigue predicted TAV durability may be approximately 7.8 years [11]. Interestingly, 

new clinical data has reported a significant increase in valve degeneration between 5-7 

years post-TAVR [12]. Approximately 50% of TAVs experienced degeneration leading to 

moderate stenosis or regurgitation within 8 years. Not only are clinical studies beginning 

to elucidate TAVs’ long-term durability, they have already revealed some variability in 

short and mid-term success. It is believed that unpredictable performance may be strongly 

influenced by incomplete or erratic stent deployment.  

1.4 Transcatheter Aortic Valve Design  

 Special considerations need to be made for TAVR approach. Surgical aortic valves 

(SAVs) are sewn onto a stent with flexible posts so commissure peaks are capable of radial 

deflection; however, TAV leaflets are sewn to rigid stent frames and fixed from 

displacement. Numerical analysis of bioprosthetic pressurization revealed how stent 
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properties can significantly affect leaflet stress and potentially influence long-term damage 

[13].  

1.4.1 Design Considerations  

 Several constraints regarding TAV design must be considered in order to ensure 

successful outcome. During TAVR, the native aortic valve is accessed via transapical or 

transfemoral approach. Replacement valves are crimped onto a balloon catheter and loaded 

inside a crimper. Once it is mounted, the stent is collapsed and leaflets are compressed. For 

a transfemoral procedure, an opening is made in the femoral artery and a pre-dilation 

balloon is expanded within the native AV to disrupt loose calcium which may interfere 

with the stent deployment. However, patients who present with narrow, tortuous vessels 

may not be well-suited for this surgery. Thus, surgeons may elect for the riskier, trans-

apical method, where the TAV device is inserted through an incision in the left ventricular 

apex. Given these options, it is more advantageous to proceed with a transfemoral 

approach.  

 Procedural safety of transfemoral-TAVR is facilitated when the diameter of the 

delivery system is minimized. One approach to reduce diameter is to decrease the thickness 

of TAV leaflets. Porcine pericardium has been explored as an alternative leaflet material 

to the traditional bovine pericardium due to its lower thickness. Even though the 

mechanical properties of porcine and bovine pericardia have been characterized [14], 

comparison of their properties is limited due to incompatible fixation procedures and 

testing protocols. Thus, it is unclear how changes in leaflet material may impact TAV 

performance and what design features may need reevaluation.     

1.4.2 Current Device Generations  
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 Currently available, FDA-approved transcatheter valves include the Edwards 

SAPIEN 3 and the Medtronic CoreValve. The SAPIEN 3, like its predecessors, utilizes 

glutaraldehyde-treated bovine pericardium as its source material for leaflet fabrication. The 

balloon-expandable, cobalt-chromium stent frame is encompassed by a skirt at its base to 

minimize the risk of paravalvular leakage (PVL). Medtronic’s CoreValve, on the other 

hand, uses a flexible, self-expanding Nitinol stent and porcine pericardial leaflets. 

CoreValve’s elongated stent allows it to be anchored along the ascending aorta and leaflets 

are situated in a supra-annular position. Several modern TAV designs are illustrated in 

Figure 6.    

 

Figure 6. Current generations of TAV designs, adapted from Walther et al. [15]. 

 

In addition to the SAPIEN 3 and CoreValve, newer generations of transcatheter valves 

have emerged and are under investigation. The Lotus valve, for example, features a braided 

Nitinol stent and bovine pericardium leaflets. The JenaValve uses a special clipping 
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mechanism to attach its Nitinol frame to the native aortic leaflets, such that the device is 

actively fixed and less prone to migration. Each TAV device utilizes distinct 

characteristics; however, leaflet design geometry has remained relatively constant. A 

representative sequence of transcatheter valves through several design iterations is 

illustrated in Figure 7. 

 

Figure 7. Representative evolution of percutaneous aortic valve design, taken from 

Fanning et al. [16]. 

 

Stent design evolution has improved aspects of device deployment, like valve repositioning 

and sealing, yet the generic leaflet design adapted from its SAV predecessors has received 

little attention.  

1.4.3 Device Degeneration and Failure  

 Calcification of bioprosthetic leaflets and cusp tearing are common failure 

mechanisms of transcatheter valves. Early generations of surgical bioprostheses suffered 

from deterioration and primary tissue degeneration was reported as the most frequent 

source of valve failure [4]. Some early generations of valve design, like the Ionescu-Shiley 

(IS) bioprosthetic surgical valve, suffered from high failure rates and degeneration. Initial 

examination of IS valves revealed exceptional hemodynamic performance and low 

incidence of thromboembolism. However, early valve dysfunction became apparent and 

many patients required reoperation. Surgically removed IS valves often demonstrated 
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structural disturbance or perforations at the commissure, the former due to calcification 

and cuspal tears [17]. Similar to the native AV, degenerative calcification predominately 

occurred in regions of mechanical stress, namely the commissures and attachment edge.  

 Extensive calcification of native aortic leaflets may constrain the expansion of the 

transcatheter stent and lead to TAV distortion [18]. TAV misdeployment prevents normal 

leaflet apposition and increases stress in at least one leaflet [19, 20]. TAV underexpansion 

due to valve oversizing can also result in significant leaflet distortion [18]. Even though 

some degree of oversizing can reduce the incidence of PVL [21], patient-prosthesis 

mismatch may have a significant, deleterious effect on mid-term patient outcomes [22]. It 

is clear that leaflet mechanics is related to valve deterioration and long-term safety. The 

relative simplicity of TAV leaflet geometry and significance of mechanical stress lends 

itself to geometric optimization; however, little information exists on the design of TAV 

leaflets. 

1.5 Design Optimization and Device Safety  

 Cardiovascular surgery and medical device usage has traditionally taken a trial-

and-error approach, where patient outcomes from clinical trials are retrospectively 

analyzed to determine success. Therefore, there is considerable desire to develop 

computational tools which can capture the complexity of the geometry and mechanical 

properties of biological tissue. Numerical simulation of cardiovascular biomechanics could 

supplement standard clinical imaging and provide more patient-specific information. 

Enhanced pre-surgical analysis can lead to improved device design and selection. Modern 

clinical practice has already begun implementing the use of tailored orthopedic devices; 
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however, patients with cardiovascular disease may suffer from patient-prosthesis mismatch 

(PPM).  

1.5.1 Device Optimization  

 Classic approaches to design optimization have been applied to investigations of 

prostheses for knee and hip replacement [23-25]; however, sophisticated numerical 

analyses of the cardiovascular system and its interaction with implantable devices have 

only been recently explored [26-29]. The goal of optimization is to identify the best value 

of an objective while satisfying given requirements. Patient-specific modeling and shape 

optimization of graft design have been performed in efforts to promote efficient 

hemodynamics [26, 28, 30]. Although, choosing appropriate objective functions, i.e. 

performance parameters, can be challenging. Optimizing graft function, for instance, may 

consist of reducing flow stagnation, maintaining appropriate wall shear stress, decreasing 

ventricular work, and increasing oxygen delivery. Since long-term durability is a primary 

concern with transcatheter valve implantation, the cost function for evaluating performance 

should place emphasis on reducing cyclic stress experienced by valve leaflets.       

1.5.2 Robustness and Reliability  

 Human anatomy can be quite diverse, especially under uncontrollable 

pathophysiological conditions. Calcium deposition on the native AV may follow general 

patterns, but the extent of calcification may be varied and asymmetric. The condition of 

the native leaflets may influence the outcome of stent dilation [31], which can subsequently 

result in leaflet distortion [18]. Several analyses of TAV eccentricity post-TAVR have 

demonstrated valve orifice conformation to non-circular shapes [18, 32, 33]. Therefore, it 

is essential to consider robustness during investigation of TAV leaflet design.   
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1.6 Project Objective  

 The objective of this study was to characterize the material properties of pericardial 

tissue and develop a computational framework to investigate the design of transcatheter 

aortic valve leaflets. Two specific aims were proposed to achieve this goal.  

1.6.1 Specific Aim 1 

 Quantify the mechanical properties of bovine and porcine pericardium. A 

structural constitutive model of hyperelastic soft tissue was adopted to describe bovine and 

porcine pericardia. Material parameters were obtained by curve fitting the model to 

experimental responses. Data from planar biaxial tension and flexural analysis were 

integrated into the constitutive models of pericardia. Material properties were implemented 

into finite element models of TAV leaflets and characteristics of valve opening were 

investigated.  

1.6.2 Specific Aim 2 

 Develop a computational framework for exploration of TAV leaflet design. The 2D 

leaflet geometry and 3D attachment edge of TAV leaflets were mathematically 

parameterized. TAV leaflet models were generated using a virtual assembly method and 

loaded under diastolic pressure. Influence of design parameters on leaflet stress and inter-

leaflet contact were explored using parametric and combinatorial approaches. Geometric 

optimization of TAV leaflets was performed to reduce maximum principle stress. Nominal 

and optimal design of bovine pericardial leaflets are examined under elliptical TAV 

deployment. A robustness-based optimization method is proposed and executed to discover 

leaflet geometries which demonstrate less variable performance under eccentric TAV 

expansion.    
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2 CONSTITUTIVE MODELING OF ANIMAL PERICARDIA 

 

2.1 Collagenous Soft Tissue  

 Soft collagenous tissues, like blood vessels, skin, and tendons, are biological 

materials which provide support to other structures in the body. Soft tissues often exhibit 

complex material characteristics arising from its intricate composition. Medical devices 

which utilize biological tissue, like cardiovascular grafts, can more easily replicate the 

behavior of healthy tissues than synthetic materials. Thus, it is of great interest to study the 

mechanical properties of soft tissue and develop modeling tools which can predict its 

response to variable conditions.    

2.1.1 Structure and Function 

 The structure and mechanical function of soft tissue are strongly related. The 

extracellular matrix (ECM) of soft tissue is mainly composed of glycosaminoglycans, 

elastin bundles, wavy collagen fibers, and water. The ECM plays several important roles: 

it provides tissue with mechanical strength so that it can maintain its shape; it provides an 

aqueous environment for diffusion of nutrients; and serves as a bioactive scaffold for 

cellular attachment, migration, and proliferation. Mechanical integrity of soft tissue is 

derived from its strong collagen fibers. In an un-loaded condition, collagen fibrils exist in 

a crimped state with various degrees of periodicity. Collagen fiber straighten out as tissue 

is mechanically loaded, as illustrated in Figure 8.       



www.manaraa.com

 15 

 

Figure 8. Soft tissue stress-strain response is associated with collagen fiber 

deformation [34]. 

 

The stress-strain relationship of soft tissue usually follows a J-shaped curve. Under low-

loading conditions, fibers have freedom to unwrinkle and slightly rotate, as a result, the 

non-collagenous components of the ECM dominate the mechanical response under low 

tissue strain. Once fibers are uncurled, load-bearing responsibility transitions to collagen 

and the tissue response stiffens considerably. By understanding how tissue architecture 

influences mechanical function, sophisticated constitutive models may be developed to 

more accurately reflect soft tissue behavior.    

2.1.2 Mechanical Characterization of Soft Tissue 

 Planar biaxial testing has been used to capture the anisotropic properties of many 

soft tissues, including skin, blood vessels, and tendons. In order to obtain the stress-strain 

relationship from biaxial testing data, it is first necessary to understand basic mechanics 

related to continuous bodies.  
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 Consider a generic mapping between a body’s undeformed, i.e. reference state, and 

a deformed configuration. Displacement of each point can be described by its current, x, 

and original, X, position.   

𝒖(𝑿, 𝑡) = 𝒙(𝑿, 𝑡) − 𝑿 1 

The deformation gradient, F, is a second-order tensor which maps the physical 

transformation.   

𝑭 =
𝜕𝒙

𝜕𝑿
=

[
 
 
 
 
 
 
𝜕𝑥1

𝜕𝑋1

𝜕𝑥2
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𝜕𝑥3

𝜕𝑋2

𝜕𝑥3
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2 

F is a fundamental measure of deformation from which important metrics like strain, strain 

rate, and volume change can be derived. Soft tissues are generally considered 

incompressible materials due to their high water content, thus 

𝐽 = det(𝑭) = 1 3 

Even though F is a fundamental measure of deformation, it is generally not symmetric and 

may not be the most convenient metric for elasticity analysis. A more appropriate 

descriptor, the right Cauchy-Green tensor, is defined as 

𝑪 =  𝑭𝑇 ∙ 𝑭 4 

In turn, the most common form of strain, the Green-Lagrange strain tensor can be written 

as  

𝑬 =  
1

2
(𝑪 − 𝑰) 5 
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where I is a second order identity tensor. Experimentally, F is determined by tracking 

optical markers and calculating displacements. An image of the planar biaxial testing 

system setup and representative tissue mounted onto the machine is shown in Figure 9.  

 Several definitions of stress tensors have also been proposed. The Kirchhoff stress 

tensor, for example, is defined as the product of Cauchy stress, 𝝈, and the Jacobian of the 

deformation gradient tensor:   

𝝉 = 𝐽𝝈 6 

However, the second Piola-Kirchhoff stress tensor, S, a symmetric tensor defined in 

material coordinates is obtained via pull-back operation of τ. 

𝑺 =  𝑭−1𝝉𝑭−𝑇 7 

While S has no real physical interpretation, it is convenient to use this stress definition in 

the formulation of constitutive models of solid materials.  

 

Figure 9. Biaxial setup (left), where tissue is loaded using sutures (right). 

 

2.1.3 Modeling Soft Tissue Mechanics 

 Biological soft tissue is a highly anisotropic material which undergoes large 

deformations and exhibits nonlinear stress-strain relationships. As a result, sophisticated 

material models are required to adequately describe soft tissue behavior. Since collagenous 
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soft tissue acts like a hyperelastic material, the stress response can be derived using a strain 

energy function, W. Specifically, the Second Piola-Kirchoff stress tensor, S, is expressed 

by 

𝑺 =  
𝜕𝑊

𝜕𝑬
 

8 

Many forms of the strain energy density function have been proposed. Ogden used 

principal stretches, λi, to describe the strain energy of incompressible, isotropic materials. 

𝑊 = ∑
𝜇𝑝

𝛼𝑝

𝑁

𝑝=1

(𝜆1

𝛼𝑝 + 𝜆2

𝛼𝑝 + 𝜆3

𝛼𝑝 − 3) 
9 

where μp and αp are material constants. The Ogden model is commonly used to model 

rubber-like materials; however, an anisotropic model is required to accurately capture the 

soft tissue response.  

 The Mooney-Rivlin model of strain energy was used to express W in terms of the 

first and second strain invariants. A generic description of an incompressible Mooney-

Rivlin material is given by 

𝑊 = 𝑐1(𝐼1̅ − 3) + 𝑐2(𝐼2̅ − 3) 10 

 where c1 and c2 are material constants and I1 and I2 are the first and second invariants of 

C, defined as  

 

𝐼1̅ = 𝑡𝑟(𝑪) 11 

𝐼2̅ =
1

2
[(𝑡𝑟(𝑪))

2
− 𝑡𝑟(𝑪2)] 

12 

The classic neo-Hookean model can be obtained from Equation 10 by setting c2 to zero. 

The Mooney-Rivlin model may be appropriate for nearly isotropic materials; however, its 
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inability to capture the stiffening effect in large strain domains limits its application to 

biological materials [35].   

 A hyperelastic material model proposed by Fung [36] has been widely used to 

characterize the mechanical behavior of soft tissue. A generalized Fung-type constitutive 

model, based on Green strain, can be written as  

𝑊 =
𝑐

2
(𝑒𝑄 − 1) 13 

𝑄 = 𝐴1𝐸11
2 + 𝐴2𝐸22

2 + 2𝐴3𝐸11𝐸22 + 𝐴4𝐸12
2 + 2𝐴5𝐸11𝐸12 + 2𝐴6𝐸22𝐸12  

where c and Ai are material constants. Equation 13 has been used to model the anisotropic 

properties of soft tissue using planar biaxial testing [37]. The Fung model has been 

extensively implemented to plane stress elements in finite element analyses of thin soft 

tissues [37]. One shortcoming of this approach is the absence of transverse shear stiffness. 

Without definition of transmural behavior, the transverse shear stiffness must be assumed. 

Previous finite element modeling of bioprosthetic valve loading revealed that diastolic 

pressurization was insensitive to transverse shear stiffness [38]. Despite its success in 

simulating bioprosthetic heart valve deformation, the Fung model formulation is 

phenomenological in nature. Thus, it not possible to ascribe relationships between tissue 

structure and mechanical function.      

 A novel, invariant-based structural constitutive framework was proposed by 

Holzapfel [39]. The Holzapfel model, inspired by the passive mechanical response of 

biological soft tissue, describes the behavior of fiber-reinforced materials. The strain 

energy function is considered a composition of isotropic, anisotropic, and volumetric 

constituents.  

𝑊 = 𝑊𝑖𝑠𝑜 + 𝑊𝑎𝑛𝑖𝑠𝑜 + 𝑊𝑣𝑜𝑙 14 
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Where the isotropic and anisotropic deformations components represent the non-

collagenous ground substance and collagen fibers, respectively. In addition to the strain 

invariants given by Equations 11 and 12, the properties related to fiber families are given 

by 

𝐼4𝑖
̅̅ ̅ = 𝒎0𝑖

∙ 𝑪𝒎0𝑖
 15 

where i indicates the fiber family whose preferred direction is given by 𝒎0 ⊗ 𝒎0. Specific 

forms of Equation 14, have been expressed by  

𝑊𝑖𝑠𝑜 = 𝐶10(𝐼1̅ − 3) 16 

𝑊𝑎𝑛𝑖𝑠𝑜 =
𝑘1

2𝑘2
∑ [exp{𝑘2[𝜅𝐼1̅ + (1 − 3𝜅)𝐼4𝑖

̅̅ ̅ − 1]2} − 1]

𝑖=4,6

 
17 

where 𝐶10, 𝑘1, and 𝑘2 are material parameters [40]. Obviously, the isotropic contribution 

is described using a neo-Hookean model. An exponential function is employed in the 

description of strain energy for collagen fibers so that the stiffening effect observed at high 

strain may be captured. The parameter 𝜅 represents the dispersion of embedded collagen 

fibers. A material with ideal fiber alignment is symbolized by the lower limit, i.e. 𝜅 

approaches 0. In contrast, the upper limit, i.e. 𝜅 = 1/3, describes a perfectly isotropic 

distribution of collagen fibers.     

2.2 Experimental Testing and Modeling  

 The mechanical properties of bovine and porcine pericardium were determined 

experimentally using planar biaxial tension and cantilever bending. Here, traditional beam 

bending is performed using bovine and porcine pericardial tissues of multiple thickness 

groups. Biaxial testing data of bovine and porcine pericardia are fit to a structural 

constitutive model and material parameters are obtained. Inverse finite element analysis 
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(FEA) of tissue bending is performed and material constants are optimized. Material 

parameters derived from both flexural and biaxial testing are implemented in FEA 

simulations of valve opening under physiological loading conditions and compared. 

2.2.1 Material Preparation 

Bovine and porcine pericardia were collected after slaughter (Animal 

Technologies, Tyler, TX) and stored on ice before preparation. Fatty nodules were removed 

cautiously and large sections were pinned in a trampoline fashion without overextension. 

Fresh BP and PP sheets were treated with 0.625% glutaraldehyde (GL) solution for 18 

hours, then placed in crosslinking solution (6% Formaldehyde, 2.2% Ethanol, 1.2% Tween 

80) for 2 hours before final transfer to 0.25% GL solution at 4° C. Tissue selection was 

performed by examination of thickness homogeneity in flat regions of pericardial sheets. 

Rectangular segments of BP (12 x 5.75 mm) and PP (7.5 x 6.5 mm) tissue were cut in 

uniform dimensions for cantilever bending tests. Tissue thickness was measured in three 

areas along the length of the sample using a non-rotating thickness gauge (Mitutoyo, Model 

7301) and the mean value was documented. For biaxial testing, tissue was selected based 

on thickness uniformity and homogeneity of fiber distribution; samples were cut into 

square pieces (20mm x 20mm) of pericardium. 

2.2.2 Biaxial Testing 

 Four graphite markers were attached to one side of the tissue specimen using a 

small amount of adhesive. Tissue samples were mounted in a trampoline manner by 

running continuous lines of suture along each edge and submerged in 0.9% NaCl solution 

maintained at 37° C. Fish hooks were used to access a 2cm x 2cm square region in the 

center of each tissue sample. 30 preconditioning cycles were performed to diminish the 
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effect of hysteresis and provide a stable mechanical response. A stress-controlled protocol 

in which the ratio of Lagrangian stress components, T11:T22 was employed where T12 = T21 

= 0. Seven experimental protocols were performed in which T11:T22 = 1:1, 0.75:1, 0.5:1, 

0.3:1, 1:0.75, 1:0.5, and 1:0.3.   

2.2.3 Cantilever Bending 

 A cantilever beam setup was established by pinning each tissue strip on one end 

and allowing the rest of the specimen to free float in water. A small needle with suture was 

fed through the free end of the tissue such that the weight of the needle pulled the tissue 

beam downward. A ruler was fixed in place near the beam for calibration during subsequent 

image analysis. Two individual weights were applied to BP (125, 56mg) and PP (45, 19mg) 

segments. Image digitization was carried out using custom Matlab (MathWorks Inc., 

Natick, MA) scripts. Images were individually cropped and converted to binary using a 

background-level threshold. Two horizontal points along the calibration ruler were used to 

determine the pixel-to-mm ratio. After digitization, points along the deflection curve were 

fit to a third-order polynomial. Vertical coordinates along the length of the beam were 

averaged between specimens to obtain a mean flexure response. 
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Figure 10. Representative sequence of image acquisition (A), thresholding (B), and 

digitization (C).  

 

A representative example of the digitization process is presented in Figure 10.  

2.2.4 Inverse FEA 

 The 3D tissue geometries were created using average dimensions of BP and PP 

specimens. Commercial software for finite element analysis (FEA), Abaqus\Standard 6.13 

and process automation, Isight 5.9 (Dassault Systemes Simulia Corp, Johnston, RI), was 

used to implement inverse FEA. Cantilever bending was performed by fixing the nodes 

along one end of the tissue from displacement and applying a concentrated force to the free 

end. Bovine and porcine pericardia are assumed to be anisotropic, incompressible, 

nonlinear, hyperelastic materials. The strain energy function was defined using a fiber-

reinforced, hyperelastic material model inspired by traditional structural modeling. 

𝑊 = 𝐶10{exp[𝐶01(𝐼1̅ − 3)] − 1} +
𝑘1

2𝑘2
∑{exp[𝑘2(𝐼4̅𝑖 − 1)2] − 1}

2

𝑖=1

+
1

𝐷
(𝐽 − 1)2 
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Where C10, C01, k1, k2, and D are material constants; 𝐼1̅ and 𝐼4̅𝑖 are deviatoric strain 

invariants. Parameters C10 and C01 characterize the matrix material, while k1 and k2 
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represent the response of collagen fibers. Material constant D controls incompressibility 

and 𝐽 is the determinant of the deformation gradient tensor. Least-squares curve fitting was 

performed on stress-strain data from recent biaxial testing of bovine and porcine 

pericardium. The material constants obtained from curve fitting were implemented in a 

user-defined material (UMAT) subroutine in Abaqus. Python scripts were used to extract 

node coordinates from the deformed configuration at timesteps corresponding to each 

loading state. Computational deformation was fit to the mean experimental response by 

specifying the polynomial coefficients and the resulting coefficient of determination (R2) 

was recorded.  

 

Figure 11. FEA bending (a) compared to experimental fit parameters (b). Side-by-

side comparison of deflection curves (c). 

 

Comparison of experimental and computational deflection curves is demonstrated in 

Figure 11. The coefficient of determination for the larger weight, i.e. 125mg and 56mg, 
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was denoted as 𝑅1
2, while the coefficient of determination of the lower weight, i.e. 45mg 

and 19mg, were denoted as 𝑅2
2. 

2.2.5 FEA Flexure Optimization Framework 

 The optimization component within Isight was chosen for its selection of multi-

objective search techniques. The Archive-based Micro Genetic Algorithm (AMGA) was 

selected to explore the parameter space. The coefficient of determination from both loading 

conditions, 𝑅1
2 and 𝑅2

2, were set as the objective functions with equal weights. An 

illustration of the Isight workflow is presented in Figure 12.  

 

Figure 12. Optimization scheme for identifying appropriate material parameters. 

 

After searching the parameter space, least-squares curve fitting was again performed on 

biaxial data for each tissue group using Equation 18. Non-matrix related terms, i.e. k1 and 

k2, were fixed at their original values and matrix-related parameters C01 and C10 were 

constrained to their optimal ranges.  
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2.2.6 Valve Modeling 

 A previously described FE model of a generic, 23 mm TAV was used in this study 

[41]. The undeformed shell model was imported into HyperMesh 12.0 (Altair Engineering, 

Troy, MI) and a bi-layer, solid element model was generated; each leaflet was discretized 

into 5394 large-strain brick (C3D8) elements. The average thickness of BP and PP leaflets 

reported from experimental testing were used for each group. The mechanical properties 

defined by Equation 18 were implemented into Abaqus using a user subroutine UMAT. 

Deformation of the TAV stent was assumed to be negligible; therefore, stent geometry was 

excluded from the analysis. Nodes along the stent-attachment line were fixed from 

displacement to mimic attachment to a rigid stent.  

 In-house Python scripts were used to export images of valve deformation taken 

from the x-y plane and calculate the geometric orifice area (GOA) at each time step. Key 

stages in the data acquisition process are demonstrated in Figure 13.     

 

Figure 13. Planar images are extracted from Abaqus (A), converted to binary (B), 

and GOA is calculated (C).   

 

Images were imported into Matlab and converted to binary using an appropriate threshold. 

Since nodes along the outside of the valve orifice were fixed, a circular region of interest 

was used to remove background pixels (gray region, Figure 13) and determine the pixel-
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to-length ratio. Black and white pixels were totaled and the ratio was used to calculate the 

geometric orifice area. In this way, GOA was computed in a manner similar to aortic valve 

planimetry, a clinical method used to measure aortic valve area.  

2.3 Pericardium Flexure and TAV Modeling  

 The thickness of thick BP (BPK, 0.45 ± 0.03 mm), thin BP (BPN, 0.32 ± 0.03 mm), 

thick PP (PPK, 0.20 ± 0.03 mm), and thin PP (PPN, 0.14 ± 0.02 mm) tissues were recorded.  

2.3.1 Biaxial Testing 

 Glutaraldehyde-treated bovine and porcine pericardia exhibited nonlinear, 

anisotropic constitutive relationships. Average experimental responses obtained from 

biaxial testing for each of the seven testing protocols are shown in Figure 47-Figure 50 in 

Appendix A. A representative fitting of an averaged stress-strain response is presented in 

Figure 14.    

 

Figure 14. Constitutive model fitting of average PPK deformation (only 1:1 loading 

protocol shown), where 11 and 22 are the preferred- and cross-fiber directions, 

respectively. 
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Material model parameters obtained from constitutive curve fitting are listed in Table 1. 

Table 1. Material model parameters from curve fitting mean biaxial responses. 

 C01 k1 (kPa) k2 C10 (kPa) κ Θ (°) R2 

BPK 11.163 10.37191 37.1714 8.385 3.7e-11 0.016 0.9677 

BPN 13.222 27.8908 56.3524 4.814 9.98e-3 8.32 0.9614 

PPK 26.486 109.6696 91.9787 2.866 2.05e-9 0.002 0.9788 

PPN 32.111 152.6404 107.272 2.044 1.16e-7 7.81 0.9872 

 

As demonstrated by the consistently low κ and θ values, collagen fibers were strongly 

aligned with a particular loading axis. The modified-Holzapfel model was able to capture 

the stress-strain relationship of each material very well, as evident by the high coefficients 

of determination reported in Table 1. Generally, porcine tissues exhibited a stiffer response 

than bovine in both the preferred- (X1) and cross-fiber (X2) directions.     

2.3.2 Flexural Testing 

 The average deflection curve for each tissue group is shown in Figure 15.  

 

Figure 15. Average deflection curves for bovine (A) and porcine (B) tissues. 

 

On average, bending of thin tissues produced greater deflection than their thicker 

counterparts and this difference was most notable for bovine pericardium.  
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2.3.3 Inverse FEA 

 Finite element simulations were able to accurately model the experimental bending 

response. In Figure 16 and Figure 17, simulated deflection using material constants 

obtained from biaxial curve fitting and the optimized parameters are compared to 

experimental bending.  

 

Figure 16. Average experimental deflection curves (blue) compared to FEA deflection 

resulting from the original biaxial parameters (black) and bending-optimized 

parameters (red). 125 mg (left) and 56 mg (right) weights were used for thick (top) 

and thin (bottom) bovine pericardium.  

 

In all conditions, the optimized material constants provided a more accurate deformation 

than the biaxial-derived parameters. 
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Figure 17. Average experimental deflection curves (blue) compared to FEA deflection 

resulting from the original biaxial parameters (black) and bending-optimized 

parameters (red). 45mg (left) and 19mg (right) weights were used for thick (top) and 

thin (bottom) porcine pericardium. 

 

Material model coefficients obtained from a biaxial-only approach tended to produce a 

softer flexural response in nearly all tissue deflections. Corrections to C01 and C10, the 

parameters governing the low-strain, isotropic response, resulted in deflections that were 

more accurate in regards to tip deflection magnitude and beam shape.  

Absolute values of C01 and C10 were not strongly correlated with deflection 

accuracy; however the product of the two parameters, denoted as CC, determined the 

goodness of fit. The effect of CC on the averaged fitting is demonstrated in Figure 18. 
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Figure 18. Influence of CC on the average coefficient of determination. 

 

The relationships between CC and the objective function were well characterized by second 

order polynomials. The value of CC at the maximum R2 is reported for each material in 

Table 2. Biaxial data was successfully re-fit after implementing constraints for C10 and C01, 

the resulting parameters are recorded in Table 2. 

Table 2. Material parameters obtained after bending optimization and biaxial re-

fitting. 

 C01 k1 (kPa) k2 C10 (kPa) CC (kPa) R2 

BPK 9.8502 10.37191 37.1714 11.6045 114.3 0.9658 

BPN 7.9345 27.8908 56.3524 18.5987 147.6 0.9339 

PPK 28.5449 109.6696 91.9787 2.3196 66.21 0.9781 

PPN 13.4848 152.6404 107.272 15.1414 204.2 0.9252 

 

Bending-adjusted material coefficients were generally less compliant than their biaxial-

derived counterparts, most notably for BPN and PPN tissues. The difference between 

matrix constants was apparent when material models were applied to valve opening 
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simulations. The position of nodes along the leaflet midline was extracted from the 

undeformed and deformed valve configurations. Juxtaposition of midline points, as seen in 

Figure 19, highlights the increased deformability of porcine samples compared to bovine 

tissue. 

 

Figure 19. Comparison of undeformed (A) and deformed (B) valve deformation with 

leaflet midline nodes highlighted in red. Midline deflection curves (C, D) after systolic 

pressurization, Δp = 4mmHg. Comparison of leaflet models using biaxial and flexure-

derived parameters (C). Evaluation of select models with parameters derived from 

biaxial-only data (solid lines) and biaxial-flexure data (dashed lines).   

 

In the cases of BPN and PPN, material model adjustment resulted in a substantial reduction 

of flexibility. The increased stiffness of these two groups was similarly indicated by the 

decrease in valve GOA, illustrated in Figure 20. 
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Figure 20. Relationship between GOA and pressure for all four tissue groups (A). 

Comparison of material coefficients for thin groups (B)  

 

Valve deformation developed comparably between tissue types during opening. Leaflets 

opened rapidly after reaching threshold pressure, then plateaued. Threshold pressures were 

2.77, 1.64, 0.38, and 0.57 mmHg for BPK, BPN, PPK, and PPN tissues, respectively. The 

extent of valve area converged for each group, yet the porcine leaflets exhibited greater 

flexure than bovine. While both porcine valves reached GOAs approaching 3cm2, BPN 

plateaued around 2.6cm2 and BPK stayed below 2.5 cm2. As with midline deflection, 

parameters derived from bending demonstrated a stiffer response than those fit using 

biaxial curve fitting. When comparing GOA at a pressure gradient near 4mmHg, relative 

difference between material models were 10.9% and 6.4% for BPN and PPN, respectively. 

Material parameters which accounted for flexural deformation consistently predicted a 

smaller orifice area than models which implemented material coefficients exclusively 

derived from biaxial testing data. 

2.4 Discussion 
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 In the current study, data from cantilever bending and biaxial tensile testing were 

assimilated into constitutive law. Comparison of TAV opening simulations revealed 

substantial differences between tissue types and mechanical testing methodologies. In this 

work, inverse FEA and structural constitutive modeling were employed to approximate the 

material response to flexural loading. This is in contrast to previous work in which Euler-

Bernoulli beam theory is assumed or bending moments are computationally approximated 

[42, 43]. Accuracy of the flexural response was governed by material parameters of the 

isotropic contribution of the strain energy function. Previous experimental work with 

pericardial tissue has recognized that the low-strain region is dominated by the ECM [43, 

44]. For instance, uniaxial tensile testing performed on pericardia tissue after collagenase 

treatment demonstrated a striking reduction in the elastic modulus in the high-strain region, 

yet the effect the low-strain modulus was minimal [44]. In this aim, it has been shown that 

flexural analysis may provide a finer assessment of ECM elasticity than standard biaxial 

testing.    

2.4.1 Mechanical Testing Modalities 

 Generally, it was observed that deflection optimization resulted in stiffer material 

parameters than those obtained from a purely biaxial approach. For some groups, parameter 

differences induced by the addition of flexural information significantly altered tissue 

deformation at physiologically-relevant levels of pressure. A previous investigation of 

mitral valve deformation which implemented bending stiffness of chordae and valve 

leaflets demonstrated significant changes to mitral leaflet flexure [45]. It was seen that the 

incorporation of appropriate bending stiffness eliminated the over-opening effect seen in 

the dynamic model of leaflet motion. Compared to the experimental leaflet deformation, 
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the computational model which utilized the correction to bending stiffness demonstrated 

higher accuracy. It is clear that multi-modal testing allows for greater characterization of 

soft tissue mechanics. In-plane compression testing of thin, fibrous soft tissue like 

pericardium is technically challenging; however, materials subjected to flexure undergo 

tensile and compressive loading. Cantilever bending benefits from utilizing simple 

geometry and loading conditions to implement large deformation. Furthermore, it has been 

demonstrated how this technique can be easily integrated with inverse material modeling 

within a computational framework to describe transversely isotropic materials.  

2.4.2 Tissue Structure and Function 

In this study, constitutive model parameters linked to the fiber properties were 

obtained from biaxial curve fitting and held constant during the bending optimization 

process. Previous work by Mirnajafi et al. showed that fiber orientation had minimal effect 

on the flexural response of native and chemically-treated bovine pericardium [43]. It was 

demonstrated here that inverse FEA is capable of capturing experimental flexure by means 

of tuning non-collagenous components of pericardia tissue. Structural constitutive 

modeling and computational tools allow for in-depth investigation of the relationship 

between tissue structure and mechanical function. The Holzapfel-type model presented 

here has been previously used to examine the contribution of matrix stiffness, fiber 

orientation, and fiber stiffness on stress concentration within bioprosthetic valve leaflets 

[46]. While the structural constitutive model formulation developed by Holzapfel et al. was 

originally used to describe the passive mechanical properties of arteries [39, 40], these 

forms can also be used to describe the behavior of planar, fiber-reinforced materials. 
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Through understanding the structure-function relationship of soft tissue, we may optimize 

bioprosthetic valve design and improve device performance.  

2.4.3 Implications for Valve Design 

Glutaraldehyde-treated bovine pericardium is recognized for its ideal mechanical 

properties and has been considered a standard source for bioprosthetic valve leaflets. 

However, some recent generations of valve designs have elected to use porcine 

pericardium. Porcine pericardium demonstrates similar mechanical characteristics with BP 

tissue; however, the thickness of porcine tissue is substantially reduced. The thinness of PP 

tissue lends itself to a more low-profile valve design, consequently improving the safety of 

transcatheter delivery. It can be seen from biaxial testing that PP is less compliant in both 

the preferred and cross-fiber directions. Construction of a virtual, generic TAV revealed 

that PP properties allowed for greater opening, potentially indicating an improvement to 

valvular hemodynamics during systole.  

Even though differences in opening profiles occurred, the influence of tissue 

properties during diastolic closure needs to be investigated to obtain a clear picture of total 

valve performance. Considering the increased stiffness of PP tissue, it is expected that TAV 

designs will generally experience greater stress concentrations. Thus, a computational 

framework for design optimization would need to be established in order to explore the 

unique advantages of these pericardial materials.  

2.4.4 Study Limitations 

 This is one of the first studies to successfully integrate mechanical testing modes 

into a single constitutive model of pericardial soft tissue; however, some limitations exist. 

Here, inverse FEA deflection was optimized to mimic the experimental deflection curve 
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under two loading conditions. Ideally, analysis of flexure under many load sets could help 

to further capture the material response; however, tight correspondence was observed 

between the two loading conditions performed. Furthermore, the moment-curvature 

description by Mirnajafi et al. only demonstrated a slightly non-linear response, indicating 

a relatively constant stiffness under flexural loading. 

 Accuracy of material model parameters was assessed by comparing deflection of 

beam bending. Qualitatively, this can be seen be seen by how well the computational 

deflection curves lie within the mean and standard deviation of experimental deflections. 

These material properties were subsequently applied to a generic TAV leaflet model and 

compared. It should be noted that an improvement in valve modeling accuracy may only 

be assumed; the TAV leaflet opening is not directly compared to experimental deformation. 

Future studies which employ flexural analysis may consider validation with experimental 

models of bioprosthetic valve pressurization.    

 Heterogeneous material properties may be a root cause of accelerated or 

asymmetric leaflet deterioration, therefore, it may be appropriate to investigate the effect 

of inter-leaflet material variability on TAV closure. In this aim, valve performance is only 

analyzed using a representative leaflet design. By taking a non-deterministic approach, the 

effect of geometry on TAV performance characteristics could be analyzed.    
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3 A COMPUTATIONAL FRAMEWORK FOR DESIGN OF 

TRANSCATHETER AORTIC VALVE LEAFLETS 

 

3.1 Design Optimization, Robustness, and Uncertainty  

 The heart is an impressive structure due to its ability to withstand intricate 

mechanical loading and endure cyclic fatigue. Changes in geometry and material properties 

can have devastating effects on heart valve functionality. For example, incidence of AS 

and severity of calcification have been shown to increase as the number of native leaflets 

is reduced [5]. Areas of tissue degeneration leading to valve failure are commonly 

identified as regions of elevated stress/strain. Thus, it is important to understand the 

mechanical performance of prosthetic devices in order to ensure structural integrity over 

time.   

 From an engineering perspective, bioprosthetic aortic valves are well-suited for 

design optimization. The AV is subjected to a high-velocity jet throughout systole; 

however, during diastole, when the aortic valve is under greatest mechanical loading, blood 

flow is minimal. Thus, deformation of the AV during diastole may be approximated using 

static pressurization [41]. Small design defects or errors in implementation can be 

catastrophic, as revealed by the early destruction of Ionescu-Shiley valves. Transcatheter 

aortic valve replacement, while theoretically ideal, is predisposed to implantation 

uncertainties. Device performance under uncertain conditions is critical for delivering 

reliable, quality performance. Robustification of valve design can be achieved using 

modern computational analyses; however, finite element simulations of bioprosthetic heart 

valves has generally taken a deterministic approach [19, 38, 41]. In this aim, leaflet 
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geometry will be parameterized and relationships between design input and valve 

mechanics will be established. Design optimization will be carried out from an ideal 

deployment state and compared to a nominal valve design. Additionally, robustness-based 

optimization will be performed to identify leaflet constraints which minimize performance 

variability. 

3.1.1 Strategies for Optimization 

 In metallurgy, the term annealing describes a process in which a material is heated, 

then gradually cooled so that atoms settle into a more ordered structure. The annealing 

treatment is able to increase ductility, thus making the material more workable. Adaptive 

Simulated Annealing (ASA) is a stochastic relaxation process based on the analogy of 

metal annealing. The ASA algorithm uses control of temperature schedules and random 

step selection to efficiently regulate parameter exploration. For parameters 𝑝𝑖 with ranges 

[𝐴𝑖 , 𝐵𝑖] in a N-dimensional parameter space, new design points, 𝑝𝑘
𝑖 , are generated by means 

of a distribution characterized by the product of distributions for the parameter, expressed 

in terms of temperatures and random variables 𝑦𝑖 in [−1, 1], where 𝑝𝑘 + 1𝑖 = 𝑝𝑘
𝑖 +

𝑦𝑖(𝐵𝑖 − 𝐴𝑖). Each parameter’s annealing schedule, 𝑇𝑖, is defined by 

 

𝑇𝑖 = 𝑇0exp (−𝑐𝑘1/𝑁) 19 

where T0 is the starting temperature. The ASA algorithm is appropriate for solving highly 

nonlinear problems with many potential solutions due to its ability to distinguish between 

local optima.     

3.1.2 Strategies for Robustness and Reliability 
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 In the context of engineering design, the term robustness describes the sensitivity 

of performance metrics to variations in design parameters. The objective in robust design 

is to improve product performance and reduce performance variability. Taguchi Robust 

Design, pioneered by Genichi Taguchi, is one method used to improve quality of 

manufactured goods. Taguchi characterized quality by employing a loss function, a 

continuous function defined in terms of variation of a performance factor from its target 

value. Founded on the principles of statistically designed experiments (DOE), Taguchi’s 

parameter design approach generates an array of designs by combining levels of control 

and noise factors. Taguchi’s methods were well received, especially in the industrial 

engineering community; however, some of the proposed statistical methods have been 

criticized by mathematicians.   

 Other approaches used to improve process or product improvement fall under the 

term Six Sigma. Six Sigma embodies a set of techniques whose formulations include 

uncertainty related to design parameters, objectives, and constraints. The name Six Sigma 

is derived from the concept that if one has six standard deviations between the mean target 

parameter and the nearest specification limit, there will essentially be no product failures. 

3.1.3 Study Design 

 In this chapter, a general six sigma approach will be taken to evaluate the 

performance of the nominal and ASA-optimized leaflet designs under elliptical 

deployment conditions. A search method which combines ASA and six sigma will be 

described and employed to minimize performance variability of TAVs under eccentric 

expansion. Design exploration of TAV leaflets will follow the flow presented in Figure 21. 
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Figure 21. Flowchart of computational study of TAV leaflet design.  

 

The framework described here encompasses the foundational description of leaflet 

geometry, efficient design optimization, and elegant robustification under TAV 

implantation uncertainty. In this way, a comprehensive analysis of leaflet mechanics can 

reveal fundamental characteristics to aid in the engineering of highly durable TAV devices.    

3.2 TAV Leaflet Modeling   

 The first step in TAV leaflet design exploration is to efficiently describe a nominal 

geometry and use parametrized equations to model a reasonably large design space. 

3.2.1 Leaflet Geometry Parameterization 

 A classic, crescent-shaped TAV leaflet geometry is adopted as the default design 

point. The characteristic leaflet has an attachment edge, also known as the suturing line, 

which is sewn along the stent and a free edge which coapts with adjacent leaflets. The 

shapes of the attachment edge and free edge were parameterized using the functions:  

𝑦 = 𝑎𝑒𝑐𝑥2
 20 
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𝑦𝑓 = ℎ(1 −
𝑒(𝑥3− 𝑚3) − 1

𝑒(𝑢3− 𝑚3) − 1
) 21 

 

Parameters a and c control the shape of the attachment edge; for simplicity, c is held at a 

constant value of 6.79. Variable h, representing the height of the free edge was described 

as: 

ℎ = 𝑦𝑛𝑜𝑚 + 𝑟(𝑆𝑆𝐿 − 𝑆𝑆𝐿𝑛𝑜𝑚) 22 

When the length of the stent suturing line (SSL) is nominal, the height (h) is zero, indicating 

a straight free edge. As the SSL increase, the height of the free edge is raised to ensure 

proper valve closure. Values of nominal height (ynom), nominal SSL (SSLnom), and r were 

held constant at 13.3mm, 19.1mm and 0.377.  

 

Figure 22. Geometric characterization of TAV leaflet with 2D shape parameter, a, 

and SSL. 
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The shape of the 3D attachment edge was characterized in cylindrical coordinates by the 

function: 

𝑧 = 𝑝𝑒𝑏𝜃 + 𝑞𝑒𝑑𝜃 23 

Where p, b, q, and d are parameters controlling the attachment edge shape. For simplicity, 

p, q, and d are held at 1.79mm, 3.05E-08 mm, and 17.09, respectively. For each TAV 

design, SSL was conserved in 2D and 3D coordinate systems.  

 

Figure 23. Effect of 3D shape parameter, b, on attachment edge shape. Black lines 

represent inner stent boundary. 

 

As parameter b increases, the stent-leaflet attachment site becomes more oriented in the 

longitudinal direction. Conversely, reduction in b shifts the leaflet towards a wider, more 

rectangular configuration.      

3.2.2 Virtual Assembly 
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 After determination of the two-dimensional shape, new leaflet meshes were created 

using the thin-plate spline approach via custom Matlab (MathWorks, Natick, MA) code. 

Nodes within the updated boundary (free edge, attachment edge) were transformed using 

a flat, nominal-shaped leaflet mesh as the template.  

 

Figure 24. Illustration of TPS leaflet re-meshing. After specifying a template mesh 

(A), updated boundary nodes (white dots) are used to generate the target mesh (B).  
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Each leaflet was discretized into 1316 large strain shell elements (S4R and S3R finite strain 

elements with reduced integration) with a uniform thickness of 0.24 mm. The Abaqus 

Scripting Interface was used to update model file geometry through custom Python (Python 

Software Foundation, Wilmington, DE) scripts. The planar mesh was transformed into its 

3D configuration by using finite element software Abaqus\Standard 6.13. The attachment 

edge coordinates were displaced to their 3D positions, calculated by Equation 23, and a 

small pressure is applied to the leaflet to facilitate convergence. The deformed leaflet shape 

was rotated ± 120° to create the remaining two leaflets with symmetry. Hence, the final, 

stress-free valve structure was constructed via virtual assembly method.    

 

Figure 25. Material orientation axes (A) were defined in the radial (blue) and 

circumferential (red) directions. Node and element sets (B) were defined across the 

leaflet to monitor stress and contact distribution.  

 

The material axes, as displayed in Figure 25, were defined such that the preferred-fiber 

direction was oriented circumferentially and the cross-fiber direction was oriented radially. 

Peak stress from the assembled TAV, total contact area between neighboring leaflets, 

maximum principle stress from specific regions (i.e. T1, M1, etc.) and contact area within 

the T-regions (T1, T2, T3) were output from closure simulations. Additionally, the standard 
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deviation (Mstd) of stress from the M-regions (M1, M2, M3) and standard deviation of 

contact area (Cstd) in the T-regions were used to quantify the distribution of stress across 

the belly and contact along the free margin, respectively.  

3.2.3 Finite Element Analysis 

 The hyperelastic material model parameters of BPN and PPK were applied to TAV 

leaflets using a UMAT subroutine and a coefficient of friction of 0.1 was assigned to each 

leaflet [38, 41]. TAV closure was performed by applying a uniform pressure of 120 mmHg 

to the aortic side of the leaflets. For leaflet closure under ideal stent deployment, a stent 

frame was not included in the FE assembly. Instead, nodes along the attachment edge were 

fixed from displacement to simulate its rigid boundary.  

 For leaflet closure under a sub-optimal stent deployment, a simple, thin-walled tube 

was used to model a generic stent. A tie constraint was defined between nodes along the 

attachment and inner surface of the stent. In this way, only four node sets along the height 

of the stent were need to displace the leaflet boundary into an elliptical shape. The four 

node sets, as shown in Figure 26, are used to control the long and short axes of an ellipse.        
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Figure 26. Oblique (A) and top (B) view of boundary conditions used to create an 

elliptical boundary. The red and yellow dashed lines represent the long and short axis, 

respectively.   

 

The displacement of the long and short axes were calculated using the equation of 

eccentricity. 

𝑒 =  √1 − (
𝑏

𝑎
)

2

   24 

Where b and a are the lengths of the long and short axes, respectively. When the axes 

lengths are equal, e approaches zero; conversely, when one axis dominates, the shape 

approaches a straight line. Three distinct eccentricity distributions, shown in Figure 27, 

were chosen to represent three generic deployment possibilities.    
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Figure 27. Normal distributions of eccentricity values to represent likelihood of 

elliptical deployment. 

3.2.4 TAV Design Space 

 Process automation software Isight was used to explore the design space. The 

Design of Experiment, Optimization, and Six Sigma components were chosen for their 

broad selection of design-search techniques. The Parameter Study and Full Factorial 

methods were used to investigate individual parameters and interaction effects, 

respectively. Each parameter range was segmented into 30 increments and both analyses 

were performed for leaflets defined by BP and PP material properties. The ASA method 

was selected in the Optimization component and the maximum MPS value was set as the 

object function. A detailed analysis of the optimization framework is shown in Figure 28.  
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Figure 28. ASA optimization framework layout (top) and breakdown of component 

outputs (bottom). 

 

The maximum number of allowable runs was set to 300 for BP and PP leaflets. As seen in 

Figure 28, Isight supplies new values for design variables a, b, and SSL. Matlab is used to 

determine the updated attachment and free edge boundaries in 2D. The target mesh is 

generated using TPS re-meshing and the node coordinates are read into Python (Simcode). 
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Python updates the Abaqus leaflet model and the 2D-to-3D transformation is performed. 

The new 3D leaflet coordinate values are read in Python and the three leaflet geometries 

are updated, thereby ensuring inter-leaflet symmetry. The TAV assembly is pressurized as 

previously described and Python extracts the desired output metrics.  

 The layout of the elliptical optimization scheme is presented in Figure 29. TAV 

leaflets are generated in an identical manner as described above.  

 

Figure 29. Robust-optimization arrangement. TAV leaflets are generated as 

previously described (left), elliptical boundaries are generated (right), and diastolic 

pressurization is performed. The mean and standard deviation of MPS is output from 

the Six Sigma module to the Optimization component. 

 

The 3D leaflet geometry was updated in each run and the Six Sigma component employed 

Monte Carlo sampling to determine 10 eccentricity values from the appropriate probability 

density function, shown in Figure 27. Python updated the node set displacements using 

Equation 24. The mean and standard deviation from the ten runs were exported to the ASA 

component and the next design point was determined. A total of 50 designs were evaluated 

for each eccentricity distribution and only BP material parameters were used in this 

analysis.  
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3.3 Parameterization Study and Combinatorial Design  

 Diastolic pressurization of TAV leaflets resulted in reasonable structural 

deformation. The nominal design of a generic BP and PP leaflet resulted in stress 

concentrations near the belly of the leaflet, towards the attachment edge. Maximum 

principle stress for PP leaflets, 199.8 PSI, was notably higher than BP leaflets, 183.7 PSI 

of the same thickness. Since biaxial tensile testing demonstrated a significant reduction in 

compliance of PP tissue in both the preferred-fiber and cross-fiber directions, this 

observation is not surprising. Maximum stress consistently peaked in the belly near the 

transition to the contact region, yet decreased rapidly within the contact area.  

 The parameter study revealed significant effects of input variables on several output 

parameters; however, these relationships were not identical between BP and PP leaflets. 

Some output parameters were also well correlated with each other. The most notable 

relationship observed was the dependence of leaflet MPS on distribution of stress along 

the M-region. As shown in Figure 30, once stress concentration along the belly became 

well-distributed, i.e. Mstd was reduced, maximum principle stress in the leaflet was 

minimized.  
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Figure 30. Distribution of stress in the M-regions was strongly correlated with the 

maximum principles stress of the entire leaflet. The data trendline is drawn in green. 
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It is believed that stress distribution along the belly is important for AV mechanics due to 

the natural alignment of collagen fibers in native AVs. The computational results shown 

here further establish the significance of this relationship. Furthermore, distribution of 

stress tended to be increased in PP leaflets compared to BP. Differences in stress 

concentrations are likely attributed to the differences in material properties between bovine 

and porcine pericardia. It is understood that collagen orientation across valve leaflets is 

important for mechanical performance; however, it may be a pivotal factor when 

considering device optimization. Generally, it was observed that SSL strongly influenced 

stress along the middle and bottom portions of the leaflet.  

 

Figure 31. Effect of SSL on total leaflet MPS.  

 

As demonstrated by Figure 31 and Figure 32, respectively, SSL controlled the MPS of the 

leaflet and distribution along the belly. 
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Figure 32. Effect of SSL on stress distribution in the M-region. Stress distribution, 

Mstd, (A) was influenced by SSL in a material dependent manner. 

 

The 2D attachment shape parameter generally influenced stress near the free margin, i.e. 

the T-region, and leaflet-to-leaflet contact area. As summarized in Figure 33, increasing 

the width of the 2D shape gradually increased the magnitude of contact area and tended to 

decrease stress near the free edge.  
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Figure 33. Effect of 2D leaflet shape on contact area (A) and stress concentrations (B), 

only BP shown. 

 

The 3D attachment shape parameter, b, also tended to control contact area and stress 

concentrations near the free edge and belly. As shown in Figure 34, contact area steadily 

increased as the leaflet edge became wider and stress was progressively lowered in some 

areas. 
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Figure 34. Impact of 3D attachment shape on leaflet-to-leaflet contact area (A) and 

stress concentrations (B). 

 

Patterns observed during the parameter study provide support for the notion that stress and 

inter-leaflet contact are readily modulated by moderate changes in leaflet geometry and 

material characteristics. In order to efficiently approach an optimization investigation, a 

full factorial study was performed to provide insight into appropriate ranges for input 

parameters. Figure 35 demonstrates how the relationship between SSL and leaflet MPS 



www.manaraa.com

 57 

changes with respect to the 3D attachment edge shape. For both material properties, a 

shorter SSL was favored for a wider attachment edge design and a higher SSL was 

beneficial with a narrower attachment edge. Since increases in 2D leaflet area and 

broadening attachment edge shape increases contact area, these results indicate that 

maximizing leaflet coaptation may not result in minimal leaflet stress concentration.   

 

Figure 35. Interaction between b and SSL on leaflet MPS.  

 

Generally, the 2D shape parameter, a, played a more minor role in development of leaflet 

stress compared to the 3D attachment shape. 
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Figure 36. Interaction effect between a and SSL on maximum principle stress.  

 

Notable difference between the two material models developed as the 2D leaflet 

approached a tapered, elongated shape. When the commissure peaks extended vertically, 

stress concentrations also emerged along the free edge. The inclined edge experienced high 

tension during pressurization in addition to focal stress along the belly. The results taken 

from the single-parameter and combinatorial studies reveal significant relationships 
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between design parameters and output variables. Some of the observed interactions can be 

seen in Figure 37.  

 

Figure 37. Parallel coordinate graph of input parameters and key output metrics. Cstd 

and Mstd is the standard deviation of contact area in the T-regions and stress in the 

M-regions, respectively. Output values only reported from BP leaflets.   

 

Independent of material model, the maximum principle stress during TAV pressurization 

was strongly correlated with the uniformity of stress along the leaflet belly. Stress 

distribution, in turn, was usually associated with uniformity of contact along the free edge 

width. Observation of local minima at various parameter combinations prevented 

significant restrictions from being made to the parameter space for optimization studies.  

3.4 TAV Leaflet Optimization  

 Shape optimization of TAV leaflet geometries resulted in a significant reduction in 

maximum principle stress for bovine and porcine material models. The ASA optimization 
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thoroughly explored the design space, as seen by the parameter histories shown in Figure 

38 and Figure 39. 

 

Figure 38. Search history of parameters a (A) and b (B) demonstrated convergence 

of optimization (PP material model). 
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Figure 39. History of SSL during leaflet optimization (PP material model). 

 

The geometric design parameters resulting in lowest peak stress are presented in Table 3. 

Table 3. Design comparison of nominal and optimized leaflet geometries. 

Design a (mm) b SSL (mm) MPS (PSI) 

BP – Nominal 5.08 3.223 19.126 183.7 

PP – Nominal 5.08 3.223 19.126 199.8 

BP – Optimal 5.7379 3.2085 19.21 162.5 

PP – Optimal 5.6515 3.1449 19.3446 165.3 

 

Even though observable differences were reported between BP and PP material models in 

the parameter study, shape optimization resulted in similar geometric design points. For 

both materials, maximum principal stress was reduced most when the attachment length 

and width were was slightly increased. Nominal and optimized geometries are compared 

in Figure 40.     
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Figure 40. Comparison of nominal (A, C) and optimized (B, D) designs for bovine 

(top) and porcine (bottom) leaflet materials under diastolic pressurization.   

 

Under nominal design conditions, both leaflet materials demonstrate peak stress 

concentration in the belly region, near the attachment edge. After geometric optimization, 

BP and PP leaflets achieved much greater stress distribution in the circumferential 

direction. As seen in the parameter study, PP leaflets were capable of a higher degree of 

stress dispersion than BP leaflets. As a result, PP design benefited from geometric 

optimization greater than its bovine counterpart. A response surface plot, shown in Figure 

41, further elaborates the relationship between input parameters and leaflet stress.  
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Figure 41. Response surface plot of 2D leaflet surface area (cm2), attachment edge 

shape parameter, and max principle stress (PSI) using BP material parameters. The 

design resulting in lowest MPS is highlighted in pink. 

 

Generally, peak stress was concentrated when leaflet surface areas became relatively large. 

When leaflet size increased, the line of contact was lowered and contact area increased. 

Since stress concentration tended to develop beneath the lowermost contact zone, 

increasing the contact triangle’s depth created a sharp stress gradient. This observation, 

taken with Figure 37, demonstrates that the shape of the leaflet-to-leaflet contact area may 

be an important characteristic for establishing circumferential stress distribution. This type 

of relationship can be easily investigated using computational tools; however, experimental 

validation is needed to confirm such an important leaflet deformation characteristic. 

3.5 TAV Leaflet Robustness    

 Geometric optimization of TAV leaflets successfully reduced peak stress 

concentration; however, the circular attachment boundary represents an idealized 

deployment condition. Robustness-based optimization was performed to find leaflet 

designs which could withstand diastolic closure after eccentric deployment. The design 
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parameters for each eccentricity distribution which resulted in lowest peak stress are 

presented in Table 4.  

Table 4. Design parameters from robust optimization.  

Design a (mm) b SSL (mm) 2D Area (cm2) 

Nominal 5.08 3.223 19.13 2.259 

E0 Opt 6.309 3.3839 18.483 2.066 

E3 Opt 6.086 3.3131 19.280 2.201 

E5 Opt 5.433 3.3797 19.005 2.211 

 

Similar to the result shown in the ASA optimization, leaflet designs with small leaflet 

surface areas and narrow attachment shapes resulted in the lowest, least variable stress 

concentrations. However, the 2D surface area of optimal leaflets tended to increase with 

eccentricity, possibly indicating a minimal leaflet size to ensure proper valve closure. As 

eccentricity increased, a narrow, vertically-oriented 3D attachment shape was preferred. 

The performance of the nominal and ASA-optimized leaflet designs are compared to the 

robustness-optimized leaflets in Figure 42. 
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Figure 42. Comparison of valve design performance under elliptical deployment 

distributions. Orange and gray bars represent the ASA-optimized and robustness-

optimized designs, respectively. Error bars represent standard deviation and 

asterisks indicate significant differences, p < 0.05.  

 

Robustness-based optimization of TAV leaflet geometries revealed shapes with 

significantly reduced stress concentrations. In addition to reducing the average peak stress, 

the elliptical-optimized designs demonstrated less variability, most notably in the E5 

distribution. It was seen in Figure 41 that the optimal design point occurred in a localized 

region of the design space. Analysis of this design under elliptical deployment showed that 

even small changes to the attachment boundary shape can annul its improvement to the 

nominal leaflet geometry. Thus, it may not be appropriate to perform leaflet shape 

optimization under idealized TAV geometry. Even though robustness-based optimization 

was able to find leaflet designs with minimized peak stress concentrations, MPS increased 

significantly with eccentricity. Optimized geometries, shown in Figure 43, demonstrated 

peak stress locations along the belly, near the M1 region.       
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Figure 43. Optimal leaflet designs under E0 (A), E3 (B), E5 (C) eccentricity 

distributions. 

 

Asymmetric stress distributions began to occur at eccentricities greater than approximately 

0.3. Peak stress concentrations tended to appear on the non-collapsing leaflets, along the 

belly where contact with the collapsed leaflet terminates. Contact area along the free 

margin was reduced during elliptical deployment, as seen in Figure 44, and commissure 

strain generally increased with eccentricity.  
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Figure 44. Contact area (left) and MPE (right) for E3 (top) and E5 (bottom) optimal 

leaflet designs. 

 

The relationship between belly stress distribution and peak leaflet MPS was also observed 

during the robustness optimization. Figure 45 illustrates the strong correlation between 

MPS and distribution of stress across the collapsing and non-collapsing leaflets.     
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Figure 45. Representative valve design under elliptical closure (e = 0.3). MPS of the 

TAV is correlated with M-region stress distribution in the non-collapsing leaflet 

(right) and collapsing leaflet (left). 

 

Peak stress during TAV pressurization under elliptical conditions occurred on the non-

collapsing leaflet, thus, stress dispersion along this leaflet was most closely related to 

leaflet MPS. As previously implied, stress distribution may be more strongly effected by 

contact area shape as contact magnitude. Figure 46 shows how contact between the 

collapsing and non-collapsing leaflets was related to stress distribution. As seen in the 

circular-orifice optimization, uniformity of contact along the free margin tended to promote 

circumferential stress distribution.     
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Figure 46. Effect of leaflet contact distribution on stress concentration along the M-

region (Mstd) of the non-collapsing leaflet under E5 eccentricity optimization. Linear 

trendline shown in green.    

 

Generally, as contact became more distributed across the leaflet free margin, stress along 

the belly of the non-collapsing leaflet became more uniform. TAV leaflets normally 

developed a triangular contact area; however, smoothed coaptation leading to a more 

rectangular-shaped contact zone tended to produce symmetric stress concentrations which 

were well spread in the circumferential direction.  

3.6 Limitations and Future Directions   

 Several assumptions were made in this study for simplification. Constant leaflet 

thickness of 0.24mm was adopted in the computational study. Although BPN and PPK 

tissues were of similar thickness, it is assumed that the mechanical properties were 

independent of tissue thickness. Pericardium often exhibits inhomogeneous thickness and 
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collagen fiber orientation, therefore, future studies may need to analyze the effect of more 

comprehensive material modeling. Additionally, parameters describing the nominal design 

represent a generic TAV leaflet and is not a replica of a commercially-available device. 

 The parameter range represents a moderate design space, but could benefit from 

expansion to encompass a broader array of geometries. Design could be further 

parameterized by defining a free edge shape. However, additional input and output 

parameters increases computational cost, a phenomenon sometimes referred to as the curse 

of dimensionality. With more design variables, the number of points needed to explore the 

design space increases rapidly, thus creating a combinatorial explosion. Despite these 

shortcomings, this study has provided a significant amount of information regarding the 

leaflet mechanics and the significant role in which geometric optimization may play in 

TAV durability. 

 In this study, it was assumed that the peak stress experienced within a typical 

loading cycle is strongly associated with material fatigue; however, fatigue life of TAV 

leaflets was not directly predicted. Since mechanical loading is greatest during diastolic 

closure, valve opening was not modeled in Aim 2. It should be noted that a more 

comprehensive analysis of TAV durability would include the time-dependent properties of 

pericardial tissue which can describe the effects of aging and mechanical fatigue damage. 

Such an investigation would require a significant amount of computational resources; 

however, the computational framework developed in this work has been used to explore 

leaflet design and may provide a starting point for the examination of several leaflet 

geometries.     
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4 CONCLUSIONS  

 

4.1 Material Properties 

 Flexure is an important mode of deformation for native and bioprosthetic heart 

valves; however, characterization of bioprosthetic leaflet materials has been primarily 

limited to planar biaxial tension. Bovine pericardium has traditionally been selected as the 

source material for bioprosthetic leaflets due to its ideal mechanical properties. Porcine 

pericardium is being investigated as an alternative leaflet material due to its exceptional 

thickness; however, the mechanical properties of porcine tissue have not been well 

characterized. In this work, it was demonstrated how flexural and biaxial testing can be 

characterized within a structural constitutive model. The first goal of this study was to 

investigate potential differences between bovine and porcine pericardium. It was observed 

that porcine pericardium experienced significantly more flexure than bovine when 

subjected to TAV pressurization. Interestingly, deflection of thin bovine pericardium was 

notably greater than that of thick; however, this difference was not as significant in the 

porcine tissues. The second goal was to determine if biaxial testing alone could accurately 

model the material response during flexural loading. For the thin pericardial tissues, 

significant adjustments to the material parameters were required to capture the 

experimental bending. Thus, it is recommended that a combination of flexural modeling 

and biaxial tensile testing may be most appropriate when describing the behavior of 

pericardial soft tissue. 

4.2 TAV Leaflet Design 



www.manaraa.com

 72 

 The design of transcatheter aortic valve leaflets was investigated using 

computational modeling tools. Leaflet geometry was parameterized using mathematical 

definitions for the free edge, attachment edge, and stent suturing line. Material properties 

from the experimental characterization of bovine and porcine pericardia were implemented 

into finite element modeling of a generic TAV leaflet. It was observed that peak stress 

concentration typically occurred near the attachment edge, below the line of coaptation. 

Maximum stress experienced in TAV leaflets was consistently correlated with stress 

distribution across the belly region. This computational study demonstrated how stress 

distribution may be impacted by leaflet materials. Additional analysis of leaflet 

deformation revealed that uniformity of contact along the free margin was strongly 

associated with stress concentration.  

 The benefit of using computational tools to study the design of sophisticated 

devices was demonstrated here. Some variables, such as leaflet strain near the stent 

attachment site, coaptation area, and contact shape cannot be easily measured 

experimentally. It has been revealed that parameters describing leaflet shape and size may 

significantly influence these factors in a sophisticated manner. Elegant parameterization 

lends itself to design exploration and geometric optimization. Optimization of TAV leaflet 

design was performed for the ideal, circular-deployment state and for several elliptical, 

misdeployment conditions. As the TAV orifice became more eccentric, leaflet stress 

increased and geometric optimization was able to mitigate this effect to a significant 

degree. In this work, a simple form of the leaflet free edge was assumed; therefore, 

additional work needs to be performed to further reduce TAV leaflet stress and find 

geometric design which are robust to changes in TAV implantation. 
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APPENDIX A 

 

Constitutive Modelling  

 Constitutive model fitting was performed on biaxial testing data for BPK, BPN, 

PPK, and PPN tissue. The average stress-strain relationship for each of the seven testing 

protocols and model fitting is shown in Figure 47,Figure 48, Figure 49, and Figure 50. 

 

Figure 47. Average biaxial response for thick bovine pericardium in the preferred-

fiber (X1) and cross-fiber (X2) directions. 

 

Figure 48. Average biaxial response for thin bovine pericardium in the preferred-

fiber (X1) and cross-fiber (X2) directions. 
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Figure 49. Average biaxial response for thick porcine pericardium in the preferred-

fiber (X1) and cross-fiber (X2) directions. 

 

 

Figure 50. Average biaxial response for thin porcine pericardium in the preferred-

fiber (X1) and cross-fiber (X2) directions. 

 

Optimization Histories  

 The ASA optimization history of BP and PP leaflets are shown in Figure 51 and 

Figure 52, respectively.  
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Figure 51. ASA optimization history (top) and relationship between leaflet MPS and 

M-region stress distribution (bottom) with bovine pericardia properties, trendline 

shown in green. 
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Figure 52. ASA optimization history (top) and relationship between leaflet MPS and 

M-region stress distribution (bottom) with porcine pericardia properties, trendline 

shown in green. 
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